Grade 10 Mathematics homework
---Summer holiday

Vectors – Equation of lines

No calculators allowed.

1. The Cartesian equations of a line are \(\frac{x-1}{3} = \frac{y+2}{2} = \frac{z-1}{3} \). Find the vector equation of the line.

2. The two lines, whose vector equations are given below, intersect. Find the point of intersection.

\[
\mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{r} = \begin{pmatrix} -1 \\ 7 \\ 5 \\ 3 \end{pmatrix} + \tau \begin{pmatrix} 12 \\ 6 \end{pmatrix}
\]

3. The position vectors \(\vec{OA} \) and \(\vec{OB} \) are \(2\mathbf{i} - \mathbf{j} + \mathbf{k} \) and \(\mathbf{i} + \mathbf{j} - \mathbf{k} \) respectively.

(a) Show that a vector equation for line \((AB) \) can be written as \(\mathbf{i}(2 + \lambda) + \mathbf{j}(-1 - 2\lambda) + \mathbf{k}(1 + 2\lambda) \).

(b) There exists a point \(P \) on line \((AB) \) such that \(\vec{OP} \) is perpendicular to \((AB) \). Find the coordinates of \(P \).

(c) Hence, or otherwise, find the perpendicular distance from the origin to the line \((AB) \).

4. Consider the two lines \(L_1 \) and \(L_2 \) with the following parametric equations:

\[
L_1: \ x = -1 - 2\mu, \ y = \mu, \ z = 2 + 3\mu \quad L_2: \ x = 2 + \lambda, \ y = -\lambda, \ z = 2 - \lambda
\]

(a) Show that lines \(L_1 \) and \(L_2 \) are skew.

(b) A third line, \(L_3 \), has the direction vector \(\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \). Verify that \(L_3 \) is perpendicular to \(L_1 \) and \(L_2 \).

(c) Find parametric equations for \(L_3 \) given that it passes through the point \(A(1,1,3) \).

(d) Find the coordinates of the point \(B \) where \(L_1 \) and \(L_2 \) intersect.

5. Find the coordinates of the point on the line \(L \) (equation below) which is nearest to the origin.

\[
L: \ x = 1 - \lambda, \ y = 2 + 3\lambda, \ z = 3 + \lambda
\]

6. The points \(A, B \) and \(C \) have position vectors \(\mathbf{a} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 6 \\ 4 \\ 5 \end{pmatrix} \) respectively.

(a) Find the position vector of the point \(P \) on line \((BC) \) such that \(\vec{AP} \) is perpendicular to \(\vec{BC} \).

(b) Hence, or otherwise, find the shortest distance from \(A \) to the line \((BC) \).
Vector – Scalar product and application

1. Find the exact measure of the angle between the vectors $\vec{i} + \vec{k}$ and $\vec{j} + \vec{k}$.
 [no calculator]

2. Find the value(s) of c for which the vectors \[
\begin{pmatrix}
10 \\
c \\
1
\end{pmatrix}
\quad \text{and} \quad \begin{pmatrix}
c \\
3c \\
3
\end{pmatrix}
\] are:
 (a) parallel;
 (b) perpendicular.
 [no calculator]

3. Consider vectors \vec{a}, \vec{b} and \vec{c} such that $\vec{a} \cdot \vec{c} = 3$ and $\vec{b} \cdot \vec{c} = 4$. Given that the vector $\vec{d} = \vec{a} + t \vec{b}$ is perpendicular to \vec{c}, find the value of t. [no calculator]

4. The vectors \vec{a}, \vec{b} each have length 2. Given that $(2\vec{a} - 3\vec{b}) \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{b}$ find the angle between \vec{a} and \vec{b}.
 [calculator allowed]
Vector – vector product and application

1. Find the area of the triangle having vertices \(F(1, 5, -1) \), \(G(0, 5, -2) \) and \(H(-1, 2, 3) \). \[\text{[no calculator] } \]

2. Find a unit vector that is perpendicular to both of the lines with the following Cartesian equations: \(\frac{x - 5}{3} = \frac{y - 2}{2} = \frac{z + 1}{-1} \) and \(\frac{x}{3} = \frac{y + 4}{2} = \frac{z - 2}{-1} \). \[\text{[calculator allowed] } \]

3. A parallelepiped is determined by the vectors \(\vec{a} \), \(\vec{b} \), and \(\vec{c} \) as shown in the diagram below. Given that \(\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k} \), \(\vec{b} = 3\hat{i} + 2\hat{j} + 3\hat{k} \) and \(\vec{c} = -2\hat{i} + 2\hat{j} + \hat{k} \), find the volume of the parallelepiped. \[\text{[calculator allowed] } \]
Angles, circles, arcs and sectors

1. A circle of radius 8 cm has a sector whose central angle has radian measure of 3. Find the following exactly:
 (a) the length of the arc from A to B passing through C.
 (b) the area of the shaded sector.
 [no calculator]

2. O is the centre of a circle with radius 24 cm.
 Chord [GH] is 36 cm. Find the area of the shaded region.
 [calculator allowed]

3. The semi-circle with centre O shown at right has an area of exactly 24 cm2.
 (a) Show that the shaded area can be expressed as
 \[\frac{24\theta}{\pi} - \frac{24}{\pi}\sin\theta \]
 (b) If $\theta = \frac{2\pi}{3}$, find the exact area of the shaded region.
 [no calculator]

4. Two circles with the same radius r intersect as shown.
 The angle subtended by the common chord (dashed in diagram) at the centre of each circle is 2θ.
 (a) Find an expression in terms of r and θ for the shaded area.
 (b) If the shaded area is equal to $\frac{1}{4}$ of the area of one of the two circles show that $8\theta - 4\sin 2\theta = \pi$. Hence, find θ accurate to three significant figures.
 [calculator allowed]
Trigonometry

Part 1 – NO calculator allowed – Questions 1-7

Total marks on test: 70

1. Find all exact solutions to the equation \(\sin 2\theta = \frac{1}{2} \) in the interval \(0 \leq \theta \leq 2\pi \). [7 marks]

2. The diagram shows a circle with centre O. Angle AOB has a measure of \(\frac{2\pi}{3} \) radians. The shaded region (a sector of the circle) has an area of \(12\pi \) cm\(^2\). Find the exact area of triangle AOB. [6 marks]

3. The diagram shows part of the graph of the function \(y = a \sin bx \). Write down the values of \(a \) and \(b \). [4 marks]

4. Find all exact solutions to the equation \(\cos 2x - \sin 2x = 1 \) in the interval \(0 \leq \theta < 360^\circ \). [6 marks]

5. If \(\sin \alpha = -\frac{4}{5} \) and \(\frac{\pi}{2} \leq \alpha \leq \frac{3\pi}{2} \), find the exact values of the following: [6 marks]
 (a) \(\cos \alpha \)
 (b) \(\tan \alpha \)
 (c) \(\sec 2\alpha \)

6. (a) Find the exact value of \(x \) in the diagram at right. [6 marks]
 (b) Find the exact area of the triangle.

7. In triangle ABC, AB = 9 cm, AC = 12 cm, and angle B is twice the size of angle C. Find the exact value of the cosine of angle C; that is, value of \(\cos C \), not the measure of angle C. [5 marks]

--- end of part 1 ---
Part 2 — Calculator allowed — Questions 8-12

8. Find all of the values of θ in the interval $0 \leq \theta \leq \pi$ that satisfy the equation $\tan 2\theta = \frac{4}{3}$. [4 marks]

9. Find the length(s) of AC in triangle ABC given that angle A is 42 degrees, AB=12.7 cm and BC=10.2 cm. [8 marks]

10. The depth of water, h meters, measured at a sea pier t hours after midnight is given by the function $h = a + b \cos \left(\frac{2\pi}{k} t\right)$, where a, b and k are constants.

The water is at a maximum depth of 21 m at midnight and noon, and is at a minimum depth of 13 m at 06:00 and at 18:00.

Determine the values of

(a) a
(b) b
(c) k

[6 marks]

11. Prove the following identity: $\frac{\cot \theta + \tan \theta}{\csc \theta} = \sec \theta$

[5 marks]

12. In the diagram below, AD is perpendicular to BC. CD = 4, BD = 2 and AD = 3. $\angle CAD = \alpha$ and $\angle BAD = \beta$.

Show that the exact value of $\cos(\alpha - \beta) = \frac{17\sqrt{13}}{65}$.

[4 marks]

Bonus Question

Find the exact value of $\tan \alpha$. [+3 marks]
Introduction to Differential calculus

Limits

1 Evaluate:
 a \(\lim_{x \to 3} (x + 4) \)
 b \(\lim_{x \to -1} (5 - 2x) \)
 c \(\lim_{x \to 4} (3x - 1) \)
 d \(\lim_{x \to 2} (5x^2 - 3x + 2) \)
 e \(\lim_{h \to 0} h^2(1 - h) \)
 f \(\lim_{x \to 0} (x^2 + 5) \)

2 Evaluate:
 a \(\lim_{x \to 3} 5 \)
 b \(\lim_{h \to 2} 7 \)
 c \(\lim_{x \to 0} c, \ c \text{ a constant} \)

3 Evaluate:
 a \(\lim_{x \to 1} \frac{x^2 - 3x}{x} \)
 b \(\lim_{h \to 2} \frac{h^2 + 5h}{h} \)
 c \(\lim_{x \to 1} \frac{x - 1}{x + 1} \)
 d \(\lim_{x \to 0} \frac{x}{x} \)

4 At what values of \(x \) are the following functions not continuous? Explain your answer in each case.
 a \(f(x) = \frac{1}{x} \)
 b \(f(x) = \frac{x^2 - x}{x} \)

5 Evaluate the following limits:
 a \(\lim_{x \to 0} \frac{x^2 - 3x}{x} \)
 b \(\lim_{x \to 0} \frac{x^2 + 5x}{x} \)
 c \(\lim_{x \to 0} \frac{2x^2 - x}{x} \)
 d \(\lim_{h \to 0} \frac{2h^2 + 6h}{h} \)
 e \(\lim_{h \to 0} \frac{3h^2 - 4h}{h} \)
 f \(\lim_{h \to 0} \frac{h^3 - 8h}{h} \)
 g \(\lim_{x \to 1} \frac{x^2 - x}{x - 1} \)
 h \(\lim_{x \to 2} \frac{x^2 - 2x}{x - 2} \)
 i \(\lim_{x \to 3} \frac{x^2 - 2x - 6}{x - 3} \)

Limits at infinity

1 Examine \(\lim_{x \to \infty} \frac{1}{x^2} \).

2 Evaluate:
 a \(\lim_{x \to \infty} \frac{3x - 2}{x + 1} \)
 b \(\lim_{x \to \infty} \frac{1 - 2x}{3x + 2} \)
 c \(\lim_{x \to \infty} \frac{x}{1 - x} \)
 d \(\lim_{x \to \infty} \frac{x^2 + 3}{x^2 - 1} \)
 e \(\lim_{x \to \infty} \frac{x^2 - 2x + 4}{x^2 + x - 1} \)
The derivative function

1. a. Find, from first principles, the gradient function of $f(x)$ where $f(x)$ is:
 i. x
 ii. 5
 iii. x^3
 iv. x^4

 b. Hence predict a formula for $f'(x)$ where $f(x) = x^n$, $n \in \mathbb{N}$.

2. Find $f'(x)$ from first principles, given that $f(x)$ is:
 a. $2x + 5$
 b. $x^2 - 3x$
 c. $-x^2 + 5x - 3$

3. Find $\frac{dy}{dx}$ from first principles given:
 a. $y = 4 - x$
 b. $y = 2x^2 + x - 1$
 c. $y = x^3 - 2x^2 + 3$

4. Use the first principles formula $f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$ to find:
 a. $f'(2)$ for $f(x) = x^3$
 b. $f'(3)$ for $f(x) = x^4$.

5. Use the first principles formula to find the gradient of the tangent to:
 a. $f(x) = 3x + 5$ at $x = -2$
 b. $f(x) = 5 - 2x^2$ at $x = 3$
 c. $f(x) = x^2 + 3x - 4$ at $x = 3$
 d. $f(x) = 5 - 2x - 3x^2$ at $x = -2$

6. a. Given $y = x^3 - 3x$, find $\frac{dy}{dx}$ from first principles.
 b. Hence find the points on the graph at which the tangent has zero gradient.

7. Find $\frac{dy}{dx}$ from first principles given:
 a. $y = \frac{4}{x}$
 b. $y = \frac{4x + 1}{x - 2}$

8. Use the first principles formula to find the gradient of the tangent to:
 a. $f(x) = \frac{1}{x^2}$ at $x = 3$
 b. $f(x) = \frac{-3x}{x^2 + 1}$ at $x = -4$
 c. $f(x) = \sqrt{x}$ at $x = 4$
 d. $f(x) = \frac{1}{\sqrt{x}}$ at $x = 1$